“It’s a hard time to be a tree. But there’s some really interesting promise and hope.”
It is this genetically engineered strain of chestnut that American Castanea, too, is now planting and propagating in New York state, under a nonexclusive commercial license from ESF. They want to sell these trees, pending approval. And then they want to keep going, engineering ever-better chestnuts, and selling them first to enthusiasts, then to farmers, and finally to conservationists for timber, reforestation, maybe even carbon capture.
To aid the effort, the company is looking for extraordinary wild specimens. In early 2024, it purchased an orchard that had been lovingly cultivated for three decades by a conservationist. The windy hilltop spot houses hundreds of trees, collected like stray kittens from a dozen states throughout the chestnut’s natural range.
Most of the trees are homely and sickly with blight. They have bulging cankers, “flagging” branches sporting yellow and brown leaves, or green shoots that burst each season from their large root systems only to flop over and die back. “They make me a little sad,” admits Andrew Serazin, cofounder of American Castanea. But a few have shot up as tall as 40 feet, with only a few cankers. All these specimens have been sampled and are being analyzed. They will become the basis of a chestnut gene database that’s as complete as American Castanea can make it.
From there, the plan is: Apply bioinformatics and AI techniques to correlate genetic signatures with specific traits. Borrow techniques developed in the cannabis industry for seedling production, cloning, and growth acceleration in high-intensity light chambers—none of which have yet been yet applied at this scale to forest trees. Develop several diverse, improved new strains of chestnut that are blight-resistant and optimized for different uses like forest restoration, nut production, and timber. Then produce seedlings at a scale previously unknown. The hope is to accelerate restoration, cutting down the time it would take resistant strains of the tree to propagate in the wild. “Tree growth takes a long time. We need to bend the curve of something that’s like a 30-year problem,” says Serazin.
The breadtree revival
The chestnut has not disappeared from the US: In fact, Americans eat some 33 million pounds of the nuts a year. These are European and Asian varieties, mostly imported. But some companies are looking to expand the cultivation of the nuts domestically.
Among those leading the quest is a company called Breadtree Farms in upstate New York, named for a traditional nickname for the chestnut. In March, it won a $2 million grant from the USDA to build the largest organic chestnut processing facility in the US. It will be up to eight times larger than needed for its own 250 acres of trees. The company is dedicated to scaling the regional industry. “We have a list of over 100 growers that are, and will be, planting chestnut trees,” says Russell Wallack, Breadtree’s young cofounder.
Chestnuts have a nutritional profile similar to brown rice; they’re high in carbohydrates and lower in fat than other nuts. And unlike other nut trees, the chestnut “masts”—produces a large crop—every year, making it far more prolific.
That makes it a good candidate for an alternative form of agriculture dubbed agroforestry, which incorporates more trees into food cultivation. Food, agriculture, and land use together account for about one-quarter of greenhouse-gas emissions. Adding trees, whether as windbreaks between fields or as crops, could lower the sector’s carbon footprint.
#GMOs #reboot #chestnut #trees